CHAPTER

Surface Area and Volume of Solids

Lesson 12.1 Nets of Solids

Name each prism. In each prism, identify a base, a face, an edge, and a vertex.

1.

2.

3.

4.

5.

Match each solid with its net(s). There may be more than one net of each solid.

Solid			
Net	c, d	a, e	b, f

a)

b)

c)

d)

e)

A **net** is a plane figure that can be folded to make a solid. This is a net. 6.

a)

c)

d)

e)

f)

Match each solid with its net(s). There may be more than one net of each solid.

Example -

A **pyramid** is a solid whose base is a polygon and whose other faces are triangles that share a common vertex. This pyramid has a square base. It is a square pyramid.

a)

b)

c)

d)

e)

f)

7.

a)

b)

c)

Name the solid that each net forms.

- Example

rectangular prism

b)

triangular prism

8.

9.

10.

11.

12.

132

13.

- 10. a) Distance turned by gear A
 - $= 3 \cdot \pi d$
 - ≈ 3 · 3.14 · 18
 - = 169.56 m

Distance each turned by gears B and C is the same as the distance turned by gear \underline{A} .

Total distance

- $= 3 \cdot 169.56$
- = 508.68 m
- ≈ 508.7 m

The total distance the three gears turn is approximately <u>508.7</u> meters.

b) 150 toys are produced when gear A makes 2.5 revolutions.

150 toys
$$\rightarrow$$
 2.5 revolutions

9,000 toys
$$\rightarrow \frac{2.5}{150} \times 9,000$$

= 150 revolutions

Gear A will make 150 revolutions.

- **11.** a) 47.1 inches
 - **b)** 40.5 minutes
 - c) 1,440 revolutions
- 12. a) Area of two large semicircles

$$= 2 \cdot \frac{1}{2} \cdot \pi r^2$$

$$= 706.5 \text{ cm}^2$$

Area of 16 small semicircles

$$= 16 \cdot \frac{1}{2} \cdot \pi r^2$$

$$\approx 8 \cdot \underline{3.14} \cdot \underline{3} \cdot \underline{3}$$

$$= 226.08 \text{ cm}^2$$

Area of rectangle = ℓw

- = $2 \cdot \text{radius of small semicircle} \cdot 8 \cdot 30$
- $= 16 \cdot 3 \cdot 30$
- $= 1,440 \text{ cm}^2$

Area of placemat

$$= 706.5 + 226.08 + 1,440$$

$$= 2,372.58$$
 cm²

The area of the placemat is approximately 2,372.58 square centimeters.

b) The designer takes <u>25</u> minutes to dye 6 placemats.

6 placemats
$$\rightarrow$$
 25 min

1,500 placemats
$$\rightarrow \frac{25}{6} \times \frac{1,500}{6}$$

= 6,250 min

He needs at least 6,250 minutes.

- **13.** a) 8,139 square feet
 - **b)** 8 hours

Chapter 12

Lesson 12.1

1. Answers vary. Sample:

Base =
$$MNO$$

Face =
$$JKNM$$

$$Edge = \overline{MO}$$

$$Vertex = J$$

2. Answers vary. Sample:

Base =
$$PQRS$$

Face =
$$TUVW$$

$$Edge = \overline{WV}$$

$$Vertex = P$$

3. Answers vary. Sample:

Base =
$$EFGH$$

$$Face = HGCD$$

$$Edge = \overline{AE}$$

$$Vertex = B$$

4. Answers vary. Sample:

Base =
$$\underline{ABCD}$$

Face =
$$XBC$$

$$Edge = \overline{AX}$$

$$Vertex = X$$

5. Answers vary. Sample:

Base =
$$PQR$$

Face =
$$\underline{YPQ}$$

$$Edge = \overline{YR}$$

$$Vertex = \underline{Y}$$

- 6. b, f; c, d; a, e
- **7.** b, c; a
- 8. cube
- 9. triangular prism
- 10. rectangular prism
- 11. triangular pyramid
- 12. triangular prism
- 13. square pyramid

Lesson 12.2

1. Area =
$$8 \times 8$$

= 64 in.²

2. Area =
$$\frac{12}{72} \times \frac{6}{12}$$

$$=\frac{72}{1}$$
 cm²

3. Area =
$$\frac{1}{2} \times 18 \times 8$$

$$= \frac{72}{12} \text{ m}^2$$
4. Area = $\frac{1}{2} \times 10 \times 14$

5. Area =
$$\frac{1}{2} \times \underline{8} \times (\underline{20} + \underline{12})$$

= 128 ft²